
System Speci�cation and Veri�cation Using

High Level Concepts

Christian Stehno

Carl-von-Ossietzky University Oldenburg
FB Informatik, Parallel systems group

D-26111 Oldenburg
Christian.Stehno@informatik.uni-oldenburg.de

Abstract. This paper describes a sample modelling and veri�cation ses-
sion using SDL and SPIN modelchecker via the PEP tool1. We will focus
on the tight integration of all involved tools allowing the user to stay
within his known environment of SDL speci�cation. Thus the user need
not know about the underlying Petri net or the Promela language even
while formulating the properties to be checked.

1 Introduction and motivation

The PEP tool [1] provides an integrated development and veri�cation environ-
ment for a selection of formal modelling techniques, including the Speci�cation
and Description Language (SDL, [10]). SDL is widely used in industry. It pro-
vides synchronous and asynchronous channels for communication of di�erent
processes, that run in parallel. In addition to the usual parts of most languages,
like variables and control ow with choice and sequence, SDL also o�ers a proce-
dure concept and dynamic process creation during runtime. This facilitates the
system development and allows compact and readable models.

To support the user during the development process and further while veri-
fying the model, it does not su�ce to group di�erent tools in one user interface.
Instead, all tools have to be tightly connected making use of all features from
a single point of view. It is usually best to stay at the top level of system de-
scription for ease of use and understanding, i.e. to allow a user to stay within his
known environment even for veri�cation purposes. Thus all of the involved steps
have to relay their results to upper levels, providing simulation, veri�cation and
debugging in terms of the speci�cation language.

This paper presents features o�ered by the PEP tool, that support all topics
mentioned above, with an emphasis on temporal logics. It is structured as follows:
Section 2 describes the modelling and simulation of SDL speci�cations. The
veri�cation of such speci�cations are presented in Sec. 3, while Sec. 4 concludes
the paper and shows possible further developments.

1 http://parsys.informatik.uni-oldenburg.de/~pep



2 High level modelling

An SDL system may be directly modelled within the PEP interface by entering
SDL code in PEP's text editor, but may also be read from external speci�cations.
The editor allows the selection of most SDL language blocks with the mouse and
o�ers online syntax checking.

Before further action can take place, the SDL speci�cation is translated into
an M-net (according to [2]) representing its formal semantics. In conjunction
with this and following transformations, a set of references is created [6], provid-
ing feedback from lower levels to the original speci�cation and facilitating the
methods descibed in this paper.

The �rst step to occur after the speci�cation is usually simulation. Simple
design aws and unwanted behaviour may be detected this way. Due to the ref-
erences, it is not only possible to simulate the net and gain the SDL behaviour
from annotations, but also to simulate the SDL program directly. Simulation
cannot guarantee properties though, it only helps in understanding the system.
To verify properties for all possible states of the system, model checking pro-
vides an e�ective and widely used method. The next section will describe some
algorithms and PEP support of them.

3 Veri�cation of the speci�cation

Various veri�cation tools are integrated into the PEP tool to o�er the user a
large base of formal concepts to check properties of the system, e.g. partial order
representation [4] and BDD based [11] algorithms. The SPIN tool is used to
verify LTL formulae over Petri net state properties.

To transform the high level M-net into Promela code, the net is �rst un-
folded into a semantically equivalent low level net and subsequently compiled
into Promela code according to [7]. This yields a SPIN compatible process ver-
sion of the Petri net which emulates the net behaviour.

Properties that may be checked have to be de�ned over Petri nets. Depending
on the model checker used, the temporal logic is determined. The SPIN tool
provides LTL checking, while other tools may be used for branching time logics.
The formula may be entered in the formula editor shown in Fig. 1. This editor
not only o�ers a simple text entry to enter and save terms, but also allows
the creation of formulae using the mouse. As shown in Fig. 1, all syntactical
components of the logic are choosable.

While simple properties may be formulated directly in terms of net entities,
e.g. [](P1), stating "the place P1 is always marked", this method is tedious
and error prone for more complex ones. Instead, a high-level syntax allows to
state explicitly model properties within the formulae, which are automatically
transformed into net formulae, using the mentioned references. A sample formula
using this concept is shown in (1), stating the property "The send state in client
process 1 is always reachable again" (liveness).

[] <> (client[1]:state = send) (1)



Fig. 1. Formula editor in PEP

To use these types of formulae, PEP provides two di�erent mechanisms.
The �rst is a reference mode of the SDL editor. The user may select states or
components of the SDL speci�cation and send their corresponding places into
the formula editor. The second approach allows the high level terms to be entered
into the formula and thus making it invariant to changes of the underlying Petri
net, as the corresponding places are regenerated each time. Both techniques are
available at the same time, so the user may choose depending on his needs.

Continuing the veri�cation process, the formula is expanded into the corre-
sponding net formula if some high level terms were used. Then it is translated
into a "never claim" and included in the promela code. The model checking in-
terface is started via the SPIN button and creates a window (cf. Fig. 2) o�ering
a result display and buttons to change SPIN options and start checking. When
the SPIN tool is invoked, the promela code is compiled into a binary which is
automatically executed. The result is displayed in the model checker window.
Additionally to the complete SPIN output, a transition sequence of the Petri net
is calculated where applicable as shown in Fig. 2. Using the references ranging
from the low level Petri net back to the SDL speci�cation, the user may simulate
the counterexample (if one is found) not only in the Petri net, but also in the
original speci�cation as de�ned at the beginning of the session. This allows a
debugging technique solely based on high level terms of the chosen modelling
language, reducing the e�orts of users to a minimum.

4 Conclusion and future work

We have briey presented the features of the PEP tool supporting the entire
modelling process of SDL speci�cations, including simulation and veri�cation,
at the abstract SDL level. The user does not have to cope with di�erent formal
models and instead gets all results in terms of the speci�cation.

While the PEP tool supports the transformation of low level Petri nets to
Promela code only, [7] describes also possible transformation of high level nets
and code of the parallel programming language B(PN)2 [3]. For the time being
these models have to be unfolded into low level nets to verify them with SPIN,
introducing more complex systems and possibly redundant data structures.

A further, very promising direction is the translation of time Petri nets into
Promela code. Due to the variable concept in Promela it should be fairly easy



Fig. 2. Result of SPIN and counter example

to add this functionality, though the global clock may impose a severe impact
on e�ciency of the validation.

The PEP tool is currently extended by some additional LTL model check-
ers from [8] and [12]. This will give an opportunity to compare the di�erent
approaches and choose the algorithms best suiting the particular problem.

References

1. E. Best. Partial Order Veri�cation with PEP. In Proc. of POMIV'96, Am. Math.
Soc. 1996

2. E. Best, H. Fleischhack, W. Fraczak, R.P. Hopkins, H. Klaudel, and E. Pelz. A
Class of Composable High Level Petri Nets. In Proc. of ATPN'95, Torino, LNCS
935, Springer 1995

3. E. Best and R. P. Hopkins. B(PN)2{ a Basic Petri Net Programming Notation.
Proc. of PARLE'93, LNCS 694, Springer 1993

4. J. Esparza. Model Checking Using Net Unfoldings. Science of Computer Program-

ming, Volume 23, pages 151-195, Elsevier 1994
5. H. Fleischhack and B. Grahlmann. A Compositional Petri Net Semantics for SDL.

In Proc. of ATPN'98, LNCS 1420, Springer 1998
6. B. Grahlmann. The Reference Component of PEP. In Proc. of TACAS'97, LNCS

1254, Springer 1997
7. B. Grahlmann, C. Pohl. Pro�ting from SPIN in PEP. In Proc. of the SPIN'98

Workshop, 1998
8. J. Esparza and K. Heljanko. A new unfolding approach to LTL model checking.

In Proc. ICALP 2000, LNCS 1853, Springer 2000
9. Gerard J. Holzmann. Design and Validation of Computer Protocols. Prentice Hall

1990
10. CCITT. Speci�cation and Description Language, CCITT Z.100. Geneva, 1992
11. K. McMillan. Symbolic model checking: An approach to the state explosion prob-

lem. Kluwer Academic Publishers, 1993
12. F. Wallner. Model checking LTL using net unfoldings. In Proc. of CAV'98, LNCS

1427, Springer 1998


